本地实验LLM
2023 Apr 28
See all posts
现在有个Tesla
P100显卡,显存是12G+12G,于是得以实验一把目前炙手可热的大模型,记录一下这个月折腾下来的笔记:
ChatGLM-6B 推理
碰到的问题是,模型有12.7G,虽然总显存有24G,但是单显卡12G却装不下,解决办法——修改device
map
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
# windows下 model.device 会被设置成 transformer.word_embeddings.device
# linux下 model.device 会被设置成 lm_head.device
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': 0, 'lm_head': 0}
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
used += 1
return device_map
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module:
if num_gpus < 2 and device_map is None:
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
else:
from accelerate import dispatch_model
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half()
if device_map is None:
device_map = auto_configure_device_map(num_gpus)
model = dispatch_model(model, device_map=device_map)
return model
llama-7b 训练
WORLD_SIZE=2 CUDA_VISIBLE_DEVICES=0,1 torchrun \
--nproc_per_node=2 \
--master_port=1234 \
finetune.py \
--base_model 'decapoda-research/llama-7b-hf' \
--data_path '../trans_chinese_alpaca_data.json' \
--output_dir './lora-alpaca-zh' \
--micro_batch_size 2 \
--num_epochs 4
训练结果, 花了30小时:
{'loss': 0.9935, 'learning_rate': 3.461538461538461e-05, 'epoch': 1.8}
{'loss': 1.0075, 'learning_rate': 3.0177514792899406e-05, 'epoch': 1.83}
{'loss': 0.9991, 'learning_rate': 2.5739644970414196e-05, 'epoch': 1.86}
{'loss': 0.9983, 'learning_rate': 2.1301775147928993e-05, 'epoch': 1.88}
{'loss': 0.9842, 'learning_rate': 1.6863905325443787e-05, 'epoch': 1.91}
{'loss': 0.9901, 'learning_rate': 1.2426035502958579e-05, 'epoch': 1.93}
{'loss': 0.9898, 'learning_rate': 7.988165680473373e-06, 'epoch': 1.96}
{'loss': 0.9875, 'learning_rate': 3.5502958579881654e-06, 'epoch': 1.98}
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 776/776 [30:18:19<00:00, 136.42s/it]There were missing keys in the checkpoint model loaded: ['base_model.model.model.embed_tokens.weight', 'base_model.model.model.layers.0.self_attn.q_proj.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.0.self_attn.k_proj.weight', 'base_model.model.model.layers.0.self_attn.v_proj.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.0.self_attn.o_proj.weight', 'base_model.model.model.layers.0.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.0.mlp.gate_proj.weight', 'base_model.model.model.layers.0.mlp.down_proj.weight', 'base_model.model.model.layers.0.mlp.up_proj.weight', 'base_model.model.model.layers.0.input_layernorm.weight', 'base_model.model.model.layers.0.post_attention_layernorm.weight', 'base_model.model.model.layers.1.self_attn.q_proj.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.k_proj.weight', 'base_model.model.model.layers.1.self_attn.v_proj.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.o_proj.weight', 'base_model.model.model.layers.1.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.1.mlp.gate_proj.weight', 'base_model.model.model.layers.1.mlp.down_proj.weight', 'base_model.model.model.layers.1.mlp.up_proj.weight', 'base_model.model.model.layers.1.input_layernorm.weight', 'base_model.model.model.layers.1.post_attention_layernorm.weight', 'base_model.model.model.layers.2.self_attn.q_proj.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.k_proj.weight', 'base_model.model.model.layers.2.self_attn.v_proj.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.o_proj.weight', 'base_model.model.model.layers.2.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.2.mlp.gate_proj.weight', 'base_model.model.model.layers.2.mlp.down_proj.weight', 'base_model.model.model.layers.2.mlp.up_proj.weight', 'base_model.model.model.layers.2.input_layernorm.weight', 'base_model.model.model.layers.2.post_attention_layernorm.weight', 'base_model.model.model.layers.3.self_attn.q_proj.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.k_proj.weight', 'base_model.model.model.layers.3.self_attn.v_proj.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.o_proj.weight', 'base_model.model.model.layers.3.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.3.mlp.gate_proj.weight', 'base_model.model.model.layers.3.mlp.down_proj.weight', 'base_model.model.model.layers.3.mlp.up_proj.weight', 'base_model.model.model.layers.3.input_layernorm.weight', 'base_model.model.model.layers.3.post_attention_layernorm.weight', 'base_model.model.model.layers.4.self_attn.q_proj.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.k_proj.weight', 'base_model.model.model.layers.4.self_attn.v_proj.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.o_proj.weight', 'base_model.model.model.layers.4.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.4.mlp.gate_proj.weight', 'base_model.model.model.layers.4.mlp.down_proj.weight', 'base_model.model.model.layers.4.mlp.up_proj.weight', 'base_model.model.model.layers.4.input_layernorm.weight', 'base_model.model.model.layers.4.post_attention_layernorm.weight', 'base_model.model.model.layers.5.self_attn.q_proj.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.k_proj.weight', 'base_model.model.model.layers.5.self_attn.v_proj.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.o_proj.weight', 'base_model.model.model.layers.5.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.5.mlp.gate_proj.weight', 'base_model.model.model.layers.5.mlp.down_proj.weight', 'base_model.model.model.layers.5.mlp.up_proj.weight', 'base_model.model.model.layers.5.input_layernorm.weight', 'base_model.model.model.layers.5.post_attention_layernorm.weight', 'base_model.model.model.layers.6.self_attn.q_proj.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.k_proj.weight', 'base_model.model.model.layers.6.self_attn.v_proj.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.o_proj.weight', 'base_model.model.model.layers.6.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.6.mlp.gate_proj.weight', 'base_model.model.model.layers.6.mlp.down_proj.weight', 'base_model.model.model.layers.6.mlp.up_proj.weight', 'base_model.model.model.layers.6.input_layernorm.weight', 'base_model.model.model.layers.6.post_attention_layernorm.weight', 'base_model.model.model.layers.7.self_attn.q_proj.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.k_proj.weight', 'base_model.model.model.layers.7.self_attn.v_proj.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.o_proj.weight', 'base_model.model.model.layers.7.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.7.mlp.gate_proj.weight', 'base_model.model.model.layers.7.mlp.down_proj.weight', 'base_model.model.model.layers.7.mlp.up_proj.weight', 'base_model.model.model.layers.7.input_layernorm.weight', 'base_model.model.model.layers.7.post_attention_layernorm.weight', 'base_model.model.model.layers.8.self_attn.q_proj.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.k_proj.weight', 'base_model.model.model.layers.8.self_attn.v_proj.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.o_proj.weight', 'base_model.model.model.layers.8.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.8.mlp.gate_proj.weight', 'base_model.model.model.layers.8.mlp.down_proj.weight', 'base_model.model.model.layers.8.mlp.up_proj.weight', 'base_model.model.model.layers.8.input_layernorm.weight', 'base_model.model.model.layers.8.post_attention_layernorm.weight', 'base_model.model.model.layers.9.self_attn.q_proj.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.k_proj.weight', 'base_model.model.model.layers.9.self_attn.v_proj.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.o_proj.weight', 'base_model.model.model.layers.9.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.9.mlp.gate_proj.weight', 'base_model.model.model.layers.9.mlp.down_proj.weight', 'base_model.model.model.layers.9.mlp.up_proj.weight', 'base_model.model.model.layers.9.input_layernorm.weight', 'base_model.model.model.layers.9.post_attention_layernorm.weight', 'base_model.model.model.layers.10.self_attn.q_proj.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.k_proj.weight', 'base_model.model.model.layers.10.self_attn.v_proj.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.o_proj.weight', 'base_model.model.model.layers.10.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.10.mlp.gate_proj.weight', 'base_model.model.model.layers.10.mlp.down_proj.weight', 'base_model.model.model.layers.10.mlp.up_proj.weight', 'base_model.model.model.layers.10.input_layernorm.weight', 'base_model.model.model.layers.10.post_attention_layernorm.weight', 'base_model.model.model.layers.11.self_attn.q_proj.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.k_proj.weight', 'base_model.model.model.layers.11.self_attn.v_proj.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.o_proj.weight', 'base_model.model.model.layers.11.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.11.mlp.gate_proj.weight', 'base_model.model.model.layers.11.mlp.down_proj.weight', 'base_model.model.model.layers.11.mlp.up_proj.weight', 'base_model.model.model.layers.11.input_layernorm.weight', 'base_model.model.model.layers.11.post_attention_layernorm.weight', 'base_model.model.model.layers.12.self_attn.q_proj.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.k_proj.weight', 'base_model.model.model.layers.12.self_attn.v_proj.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.o_proj.weight', 'base_model.model.model.layers.12.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.12.mlp.gate_proj.weight', 'base_model.model.model.layers.12.mlp.down_proj.weight', 'base_model.model.model.layers.12.mlp.up_proj.weight', 'base_model.model.model.layers.12.input_layernorm.weight', 'base_model.model.model.layers.12.post_attention_layernorm.weight', 'base_model.model.model.layers.13.self_attn.q_proj.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.k_proj.weight', 'base_model.model.model.layers.13.self_attn.v_proj.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.o_proj.weight', 'base_model.model.model.layers.13.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.13.mlp.gate_proj.weight', 'base_model.model.model.layers.13.mlp.down_proj.weight', 'base_model.model.model.layers.13.mlp.up_proj.weight', 'base_model.model.model.layers.13.input_layernorm.weight', 'base_model.model.model.layers.13.post_attention_layernorm.weight', 'base_model.model.model.layers.14.self_attn.q_proj.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.k_proj.weight', 'base_model.model.model.layers.14.self_attn.v_proj.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.o_proj.weight', 'base_model.model.model.layers.14.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.14.mlp.gate_proj.weight', 'base_model.model.model.layers.14.mlp.down_proj.weight', 'base_model.model.model.layers.14.mlp.up_proj.weight', 'base_model.model.model.layers.14.input_layernorm.weight', 'base_model.model.model.layers.14.post_attention_layernorm.weight', 'base_model.model.model.layers.15.self_attn.q_proj.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.k_proj.weight', 'base_model.model.model.layers.15.self_attn.v_proj.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.o_proj.weight', 'base_model.model.model.layers.15.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.15.mlp.gate_proj.weight', 'base_model.model.model.layers.15.mlp.down_proj.weight', 'base_model.model.model.layers.15.mlp.up_proj.weight', 'base_model.model.model.layers.15.input_layernorm.weight', 'base_model.model.model.layers.15.post_attention_layernorm.weight', 'base_model.model.model.layers.16.self_attn.q_proj.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.k_proj.weight', 'base_model.model.model.layers.16.self_attn.v_proj.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.o_proj.weight', 'base_model.model.model.layers.16.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.16.mlp.gate_proj.weight', 'base_model.model.model.layers.16.mlp.down_proj.weight', 'base_model.model.model.layers.16.mlp.up_proj.weight', 'base_model.model.model.layers.16.input_layernorm.weight', 'base_model.model.model.layers.16.post_attention_layernorm.weight', 'base_model.model.model.layers.17.self_attn.q_proj.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.k_proj.weight', 'base_model.model.model.layers.17.self_attn.v_proj.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.o_proj.weight', 'base_model.model.model.layers.17.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.17.mlp.gate_proj.weight', 'base_model.model.model.layers.17.mlp.down_proj.weight', 'base_model.model.model.layers.17.mlp.up_proj.weight', 'base_model.model.model.layers.17.input_layernorm.weight', 'base_model.model.model.layers.17.post_attention_layernorm.weight', 'base_model.model.model.layers.18.self_attn.q_proj.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.k_proj.weight', 'base_model.model.model.layers.18.self_attn.v_proj.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.o_proj.weight', 'base_model.model.model.layers.18.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.18.mlp.gate_proj.weight', 'base_model.model.model.layers.18.mlp.down_proj.weight', 'base_model.model.model.layers.18.mlp.up_proj.weight', 'base_model.model.model.layers.18.input_layernorm.weight', 'base_model.model.model.layers.18.post_attention_layernorm.weight', 'base_model.model.model.layers.19.self_attn.q_proj.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.k_proj.weight', 'base_model.model.model.layers.19.self_attn.v_proj.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.o_proj.weight', 'base_model.model.model.layers.19.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.19.mlp.gate_proj.weight', 'base_model.model.model.layers.19.mlp.down_proj.weight', 'base_model.model.model.layers.19.mlp.up_proj.weight', 'base_model.model.model.layers.19.input_layernorm.weight', 'base_model.model.model.layers.19.post_attention_layernorm.weight', 'base_model.model.model.layers.20.self_attn.q_proj.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.k_proj.weight', 'base_model.model.model.layers.20.self_attn.v_proj.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.o_proj.weight', 'base_model.model.model.layers.20.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.20.mlp.gate_proj.weight', 'base_model.model.model.layers.20.mlp.down_proj.weight', 'base_model.model.model.layers.20.mlp.up_proj.weight', 'base_model.model.model.layers.20.input_layernorm.weight', 'base_model.model.model.layers.20.post_attention_layernorm.weight', 'base_model.model.model.layers.21.self_attn.q_proj.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.k_proj.weight', 'base_model.model.model.layers.21.self_attn.v_proj.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.o_proj.weight', 'base_model.model.model.layers.21.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.21.mlp.gate_proj.weight', 'base_model.model.model.layers.21.mlp.down_proj.weight', 'base_model.model.model.layers.21.mlp.up_proj.weight', 'base_model.model.model.layers.21.input_layernorm.weight', 'base_model.model.model.layers.21.post_attention_layernorm.weight', 'base_model.model.model.layers.22.self_attn.q_proj.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.k_proj.weight', 'base_model.model.model.layers.22.self_attn.v_proj.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.o_proj.weight', 'base_model.model.model.layers.22.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.22.mlp.gate_proj.weight', 'base_model.model.model.layers.22.mlp.down_proj.weight', 'base_model.model.model.layers.22.mlp.up_proj.weight', 'base_model.model.model.layers.22.input_layernorm.weight', 'base_model.model.model.layers.22.post_attention_layernorm.weight', 'base_model.model.model.layers.23.self_attn.q_proj.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.k_proj.weight', 'base_model.model.model.layers.23.self_attn.v_proj.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.o_proj.weight', 'base_model.model.model.layers.23.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.23.mlp.gate_proj.weight', 'base_model.model.model.layers.23.mlp.down_proj.weight', 'base_model.model.model.layers.23.mlp.up_proj.weight', 'base_model.model.model.layers.23.input_layernorm.weight', 'base_model.model.model.layers.23.post_attention_layernorm.weight', 'base_model.model.model.layers.24.self_attn.q_proj.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.k_proj.weight', 'base_model.model.model.layers.24.self_attn.v_proj.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.o_proj.weight', 'base_model.model.model.layers.24.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.24.mlp.gate_proj.weight', 'base_model.model.model.layers.24.mlp.down_proj.weight', 'base_model.model.model.layers.24.mlp.up_proj.weight', 'base_model.model.model.layers.24.input_layernorm.weight', 'base_model.model.model.layers.24.post_attention_layernorm.weight', 'base_model.model.model.layers.25.self_attn.q_proj.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.k_proj.weight', 'base_model.model.model.layers.25.self_attn.v_proj.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.o_proj.weight', 'base_model.model.model.layers.25.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.25.mlp.gate_proj.weight', 'base_model.model.model.layers.25.mlp.down_proj.weight', 'base_model.model.model.layers.25.mlp.up_proj.weight', 'base_model.model.model.layers.25.input_layernorm.weight', 'base_model.model.model.layers.25.post_attention_layernorm.weight', 'base_model.model.model.layers.26.self_attn.q_proj.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.k_proj.weight', 'base_model.model.model.layers.26.self_attn.v_proj.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.o_proj.weight', 'base_model.model.model.layers.26.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.26.mlp.gate_proj.weight', 'base_model.model.model.layers.26.mlp.down_proj.weight', 'base_model.model.model.layers.26.mlp.up_proj.weight', 'base_model.model.model.layers.26.input_layernorm.weight', 'base_model.model.model.layers.26.post_attention_layernorm.weight', 'base_model.model.model.layers.27.self_attn.q_proj.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.k_proj.weight', 'base_model.model.model.layers.27.self_attn.v_proj.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.o_proj.weight', 'base_model.model.model.layers.27.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.27.mlp.gate_proj.weight', 'base_model.model.model.layers.27.mlp.down_proj.weight', 'base_model.model.model.layers.27.mlp.up_proj.weight', 'base_model.model.model.layers.27.input_layernorm.weight', 'base_model.model.model.layers.27.post_attention_layernorm.weight', 'base_model.model.model.layers.28.self_attn.q_proj.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.k_proj.weight', 'base_model.model.model.layers.28.self_attn.v_proj.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.o_proj.weight', 'base_model.model.model.layers.28.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.28.mlp.gate_proj.weight', 'base_model.model.model.layers.28.mlp.down_proj.weight', 'base_model.model.model.layers.28.mlp.up_proj.weight', 'base_model.model.model.layers.28.input_layernorm.weight', 'base_model.model.model.layers.28.post_attention_layernorm.weight', 'base_model.model.model.layers.29.self_attn.q_proj.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.k_proj.weight', 'base_model.model.model.layers.29.self_attn.v_proj.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.o_proj.weight', 'base_model.model.model.layers.29.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.29.mlp.gate_proj.weight', 'base_model.model.model.layers.29.mlp.down_proj.weight', 'base_model.model.model.layers.29.mlp.up_proj.weight', 'base_model.model.model.layers.29.input_layernorm.weight', 'base_model.model.model.layers.29.post_attention_layernorm.weight', 'base_model.model.model.layers.30.self_attn.q_proj.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.k_proj.weight', 'base_model.model.model.layers.30.self_attn.v_proj.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.o_proj.weight', 'base_model.model.model.layers.30.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.30.mlp.gate_proj.weight', 'base_model.model.model.layers.30.mlp.down_proj.weight', 'base_model.model.model.layers.30.mlp.up_proj.weight', 'base_model.model.model.layers.30.input_layernorm.weight', 'base_model.model.model.layers.30.post_attention_layernorm.weight', 'base_model.model.model.layers.31.self_attn.q_proj.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.k_proj.weight', 'base_model.model.model.layers.31.self_attn.v_proj.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.o_proj.weight', 'base_model.model.model.layers.31.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.31.mlp.gate_proj.weight', 'base_model.model.model.layers.31.mlp.down_proj.weight', 'base_model.model.model.layers.31.mlp.up_proj.weight', 'base_model.model.model.layers.31.input_layernorm.weight', 'base_model.model.model.layers.31.post_attention_layernorm.weight', 'base_model.model.model.norm.weight', 'base_model.model.lm_head.0.weight'].
There were unexpected keys in the checkpoint model loaded: ['base_model.model.model.layers.0.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_B.weight'].
There were missing keys in the checkpoint model loaded: ['base_model.model.model.embed_tokens.weight', 'base_model.model.model.layers.0.self_attn.q_proj.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.0.self_attn.k_proj.weight', 'base_model.model.model.layers.0.self_attn.v_proj.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.0.self_attn.o_proj.weight', 'base_model.model.model.layers.0.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.0.mlp.gate_proj.weight', 'base_model.model.model.layers.0.mlp.down_proj.weight', 'base_model.model.model.layers.0.mlp.up_proj.weight', 'base_model.model.model.layers.0.input_layernorm.weight', 'base_model.model.model.layers.0.post_attention_layernorm.weight', 'base_model.model.model.layers.1.self_attn.q_proj.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.k_proj.weight', 'base_model.model.model.layers.1.self_attn.v_proj.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.o_proj.weight', 'base_model.model.model.layers.1.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.1.mlp.gate_proj.weight', 'base_model.model.model.layers.1.mlp.down_proj.weight', 'base_model.model.model.layers.1.mlp.up_proj.weight', 'base_model.model.model.layers.1.input_layernorm.weight', 'base_model.model.model.layers.1.post_attention_layernorm.weight', 'base_model.model.model.layers.2.self_attn.q_proj.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.k_proj.weight', 'base_model.model.model.layers.2.self_attn.v_proj.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.o_proj.weight', 'base_model.model.model.layers.2.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.2.mlp.gate_proj.weight', 'base_model.model.model.layers.2.mlp.down_proj.weight', 'base_model.model.model.layers.2.mlp.up_proj.weight', 'base_model.model.model.layers.2.input_layernorm.weight', 'base_model.model.model.layers.2.post_attention_layernorm.weight', 'base_model.model.model.layers.3.self_attn.q_proj.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.k_proj.weight', 'base_model.model.model.layers.3.self_attn.v_proj.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.o_proj.weight', 'base_model.model.model.layers.3.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.3.mlp.gate_proj.weight', 'base_model.model.model.layers.3.mlp.down_proj.weight', 'base_model.model.model.layers.3.mlp.up_proj.weight', 'base_model.model.model.layers.3.input_layernorm.weight', 'base_model.model.model.layers.3.post_attention_layernorm.weight', 'base_model.model.model.layers.4.self_attn.q_proj.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.k_proj.weight', 'base_model.model.model.layers.4.self_attn.v_proj.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.o_proj.weight', 'base_model.model.model.layers.4.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.4.mlp.gate_proj.weight', 'base_model.model.model.layers.4.mlp.down_proj.weight', 'base_model.model.model.layers.4.mlp.up_proj.weight', 'base_model.model.model.layers.4.input_layernorm.weight', 'base_model.model.model.layers.4.post_attention_layernorm.weight', 'base_model.model.model.layers.5.self_attn.q_proj.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.k_proj.weight', 'base_model.model.model.layers.5.self_attn.v_proj.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.o_proj.weight', 'base_model.model.model.layers.5.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.5.mlp.gate_proj.weight', 'base_model.model.model.layers.5.mlp.down_proj.weight', 'base_model.model.model.layers.5.mlp.up_proj.weight', 'base_model.model.model.layers.5.input_layernorm.weight', 'base_model.model.model.layers.5.post_attention_layernorm.weight', 'base_model.model.model.layers.6.self_attn.q_proj.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.k_proj.weight', 'base_model.model.model.layers.6.self_attn.v_proj.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.o_proj.weight', 'base_model.model.model.layers.6.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.6.mlp.gate_proj.weight', 'base_model.model.model.layers.6.mlp.down_proj.weight', 'base_model.model.model.layers.6.mlp.up_proj.weight', 'base_model.model.model.layers.6.input_layernorm.weight', 'base_model.model.model.layers.6.post_attention_layernorm.weight', 'base_model.model.model.layers.7.self_attn.q_proj.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.k_proj.weight', 'base_model.model.model.layers.7.self_attn.v_proj.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.o_proj.weight', 'base_model.model.model.layers.7.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.7.mlp.gate_proj.weight', 'base_model.model.model.layers.7.mlp.down_proj.weight', 'base_model.model.model.layers.7.mlp.up_proj.weight', 'base_model.model.model.layers.7.input_layernorm.weight', 'base_model.model.model.layers.7.post_attention_layernorm.weight', 'base_model.model.model.layers.8.self_attn.q_proj.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.k_proj.weight', 'base_model.model.model.layers.8.self_attn.v_proj.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.o_proj.weight', 'base_model.model.model.layers.8.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.8.mlp.gate_proj.weight', 'base_model.model.model.layers.8.mlp.down_proj.weight', 'base_model.model.model.layers.8.mlp.up_proj.weight', 'base_model.model.model.layers.8.input_layernorm.weight', 'base_model.model.model.layers.8.post_attention_layernorm.weight', 'base_model.model.model.layers.9.self_attn.q_proj.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.k_proj.weight', 'base_model.model.model.layers.9.self_attn.v_proj.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.o_proj.weight', 'base_model.model.model.layers.9.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.9.mlp.gate_proj.weight', 'base_model.model.model.layers.9.mlp.down_proj.weight', 'base_model.model.model.layers.9.mlp.up_proj.weight', 'base_model.model.model.layers.9.input_layernorm.weight', 'base_model.model.model.layers.9.post_attention_layernorm.weight', 'base_model.model.model.layers.10.self_attn.q_proj.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.k_proj.weight', 'base_model.model.model.layers.10.self_attn.v_proj.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.o_proj.weight', 'base_model.model.model.layers.10.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.10.mlp.gate_proj.weight', 'base_model.model.model.layers.10.mlp.down_proj.weight', 'base_model.model.model.layers.10.mlp.up_proj.weight', 'base_model.model.model.layers.10.input_layernorm.weight', 'base_model.model.model.layers.10.post_attention_layernorm.weight', 'base_model.model.model.layers.11.self_attn.q_proj.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.k_proj.weight', 'base_model.model.model.layers.11.self_attn.v_proj.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.o_proj.weight', 'base_model.model.model.layers.11.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.11.mlp.gate_proj.weight', 'base_model.model.model.layers.11.mlp.down_proj.weight', 'base_model.model.model.layers.11.mlp.up_proj.weight', 'base_model.model.model.layers.11.input_layernorm.weight', 'base_model.model.model.layers.11.post_attention_layernorm.weight', 'base_model.model.model.layers.12.self_attn.q_proj.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.k_proj.weight', 'base_model.model.model.layers.12.self_attn.v_proj.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.o_proj.weight', 'base_model.model.model.layers.12.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.12.mlp.gate_proj.weight', 'base_model.model.model.layers.12.mlp.down_proj.weight', 'base_model.model.model.layers.12.mlp.up_proj.weight', 'base_model.model.model.layers.12.input_layernorm.weight', 'base_model.model.model.layers.12.post_attention_layernorm.weight', 'base_model.model.model.layers.13.self_attn.q_proj.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.k_proj.weight', 'base_model.model.model.layers.13.self_attn.v_proj.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.o_proj.weight', 'base_model.model.model.layers.13.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.13.mlp.gate_proj.weight', 'base_model.model.model.layers.13.mlp.down_proj.weight', 'base_model.model.model.layers.13.mlp.up_proj.weight', 'base_model.model.model.layers.13.input_layernorm.weight', 'base_model.model.model.layers.13.post_attention_layernorm.weight', 'base_model.model.model.layers.14.self_attn.q_proj.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.k_proj.weight', 'base_model.model.model.layers.14.self_attn.v_proj.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.o_proj.weight', 'base_model.model.model.layers.14.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.14.mlp.gate_proj.weight', 'base_model.model.model.layers.14.mlp.down_proj.weight', 'base_model.model.model.layers.14.mlp.up_proj.weight', 'base_model.model.model.layers.14.input_layernorm.weight', 'base_model.model.model.layers.14.post_attention_layernorm.weight', 'base_model.model.model.layers.15.self_attn.q_proj.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.k_proj.weight', 'base_model.model.model.layers.15.self_attn.v_proj.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.o_proj.weight', 'base_model.model.model.layers.15.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.15.mlp.gate_proj.weight', 'base_model.model.model.layers.15.mlp.down_proj.weight', 'base_model.model.model.layers.15.mlp.up_proj.weight', 'base_model.model.model.layers.15.input_layernorm.weight', 'base_model.model.model.layers.15.post_attention_layernorm.weight', 'base_model.model.model.layers.16.self_attn.q_proj.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.k_proj.weight', 'base_model.model.model.layers.16.self_attn.v_proj.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.o_proj.weight', 'base_model.model.model.layers.16.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.16.mlp.gate_proj.weight', 'base_model.model.model.layers.16.mlp.down_proj.weight', 'base_model.model.model.layers.16.mlp.up_proj.weight', 'base_model.model.model.layers.16.input_layernorm.weight', 'base_model.model.model.layers.16.post_attention_layernorm.weight', 'base_model.model.model.layers.17.self_attn.q_proj.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.k_proj.weight', 'base_model.model.model.layers.17.self_attn.v_proj.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.o_proj.weight', 'base_model.model.model.layers.17.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.17.mlp.gate_proj.weight', 'base_model.model.model.layers.17.mlp.down_proj.weight', 'base_model.model.model.layers.17.mlp.up_proj.weight', 'base_model.model.model.layers.17.input_layernorm.weight', 'base_model.model.model.layers.17.post_attention_layernorm.weight', 'base_model.model.model.layers.18.self_attn.q_proj.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.k_proj.weight', 'base_model.model.model.layers.18.self_attn.v_proj.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.o_proj.weight', 'base_model.model.model.layers.18.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.18.mlp.gate_proj.weight', 'base_model.model.model.layers.18.mlp.down_proj.weight', 'base_model.model.model.layers.18.mlp.up_proj.weight', 'base_model.model.model.layers.18.input_layernorm.weight', 'base_model.model.model.layers.18.post_attention_layernorm.weight', 'base_model.model.model.layers.19.self_attn.q_proj.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.k_proj.weight', 'base_model.model.model.layers.19.self_attn.v_proj.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.o_proj.weight', 'base_model.model.model.layers.19.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.19.mlp.gate_proj.weight', 'base_model.model.model.layers.19.mlp.down_proj.weight', 'base_model.model.model.layers.19.mlp.up_proj.weight', 'base_model.model.model.layers.19.input_layernorm.weight', 'base_model.model.model.layers.19.post_attention_layernorm.weight', 'base_model.model.model.layers.20.self_attn.q_proj.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.k_proj.weight', 'base_model.model.model.layers.20.self_attn.v_proj.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.o_proj.weight', 'base_model.model.model.layers.20.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.20.mlp.gate_proj.weight', 'base_model.model.model.layers.20.mlp.down_proj.weight', 'base_model.model.model.layers.20.mlp.up_proj.weight', 'base_model.model.model.layers.20.input_layernorm.weight', 'base_model.model.model.layers.20.post_attention_layernorm.weight', 'base_model.model.model.layers.21.self_attn.q_proj.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.k_proj.weight', 'base_model.model.model.layers.21.self_attn.v_proj.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.o_proj.weight', 'base_model.model.model.layers.21.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.21.mlp.gate_proj.weight', 'base_model.model.model.layers.21.mlp.down_proj.weight', 'base_model.model.model.layers.21.mlp.up_proj.weight', 'base_model.model.model.layers.21.input_layernorm.weight', 'base_model.model.model.layers.21.post_attention_layernorm.weight', 'base_model.model.model.layers.22.self_attn.q_proj.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.k_proj.weight', 'base_model.model.model.layers.22.self_attn.v_proj.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.o_proj.weight', 'base_model.model.model.layers.22.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.22.mlp.gate_proj.weight', 'base_model.model.model.layers.22.mlp.down_proj.weight', 'base_model.model.model.layers.22.mlp.up_proj.weight', 'base_model.model.model.layers.22.input_layernorm.weight', 'base_model.model.model.layers.22.post_attention_layernorm.weight', 'base_model.model.model.layers.23.self_attn.q_proj.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.k_proj.weight', 'base_model.model.model.layers.23.self_attn.v_proj.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.o_proj.weight', 'base_model.model.model.layers.23.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.23.mlp.gate_proj.weight', 'base_model.model.model.layers.23.mlp.down_proj.weight', 'base_model.model.model.layers.23.mlp.up_proj.weight', 'base_model.model.model.layers.23.input_layernorm.weight', 'base_model.model.model.layers.23.post_attention_layernorm.weight', 'base_model.model.model.layers.24.self_attn.q_proj.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.k_proj.weight', 'base_model.model.model.layers.24.self_attn.v_proj.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.o_proj.weight', 'base_model.model.model.layers.24.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.24.mlp.gate_proj.weight', 'base_model.model.model.layers.24.mlp.down_proj.weight', 'base_model.model.model.layers.24.mlp.up_proj.weight', 'base_model.model.model.layers.24.input_layernorm.weight', 'base_model.model.model.layers.24.post_attention_layernorm.weight', 'base_model.model.model.layers.25.self_attn.q_proj.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.k_proj.weight', 'base_model.model.model.layers.25.self_attn.v_proj.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.o_proj.weight', 'base_model.model.model.layers.25.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.25.mlp.gate_proj.weight', 'base_model.model.model.layers.25.mlp.down_proj.weight', 'base_model.model.model.layers.25.mlp.up_proj.weight', 'base_model.model.model.layers.25.input_layernorm.weight', 'base_model.model.model.layers.25.post_attention_layernorm.weight', 'base_model.model.model.layers.26.self_attn.q_proj.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.k_proj.weight', 'base_model.model.model.layers.26.self_attn.v_proj.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.o_proj.weight', 'base_model.model.model.layers.26.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.26.mlp.gate_proj.weight', 'base_model.model.model.layers.26.mlp.down_proj.weight', 'base_model.model.model.layers.26.mlp.up_proj.weight', 'base_model.model.model.layers.26.input_layernorm.weight', 'base_model.model.model.layers.26.post_attention_layernorm.weight', 'base_model.model.model.layers.27.self_attn.q_proj.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.k_proj.weight', 'base_model.model.model.layers.27.self_attn.v_proj.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.o_proj.weight', 'base_model.model.model.layers.27.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.27.mlp.gate_proj.weight', 'base_model.model.model.layers.27.mlp.down_proj.weight', 'base_model.model.model.layers.27.mlp.up_proj.weight', 'base_model.model.model.layers.27.input_layernorm.weight', 'base_model.model.model.layers.27.post_attention_layernorm.weight', 'base_model.model.model.layers.28.self_attn.q_proj.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.k_proj.weight', 'base_model.model.model.layers.28.self_attn.v_proj.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.o_proj.weight', 'base_model.model.model.layers.28.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.28.mlp.gate_proj.weight', 'base_model.model.model.layers.28.mlp.down_proj.weight', 'base_model.model.model.layers.28.mlp.up_proj.weight', 'base_model.model.model.layers.28.input_layernorm.weight', 'base_model.model.model.layers.28.post_attention_layernorm.weight', 'base_model.model.model.layers.29.self_attn.q_proj.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.k_proj.weight', 'base_model.model.model.layers.29.self_attn.v_proj.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.o_proj.weight', 'base_model.model.model.layers.29.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.29.mlp.gate_proj.weight', 'base_model.model.model.layers.29.mlp.down_proj.weight', 'base_model.model.model.layers.29.mlp.up_proj.weight', 'base_model.model.model.layers.29.input_layernorm.weight', 'base_model.model.model.layers.29.post_attention_layernorm.weight', 'base_model.model.model.layers.30.self_attn.q_proj.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.k_proj.weight', 'base_model.model.model.layers.30.self_attn.v_proj.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.o_proj.weight', 'base_model.model.model.layers.30.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.30.mlp.gate_proj.weight', 'base_model.model.model.layers.30.mlp.down_proj.weight', 'base_model.model.model.layers.30.mlp.up_proj.weight', 'base_model.model.model.layers.30.input_layernorm.weight', 'base_model.model.model.layers.30.post_attention_layernorm.weight', 'base_model.model.model.layers.31.self_attn.q_proj.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.k_proj.weight', 'base_model.model.model.layers.31.self_attn.v_proj.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.o_proj.weight', 'base_model.model.model.layers.31.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.31.mlp.gate_proj.weight', 'base_model.model.model.layers.31.mlp.down_proj.weight', 'base_model.model.model.layers.31.mlp.up_proj.weight', 'base_model.model.model.layers.31.input_layernorm.weight', 'base_model.model.model.layers.31.post_attention_layernorm.weight', 'base_model.model.model.norm.weight', 'base_model.model.lm_head.0.weight'].
There were unexpected keys in the checkpoint model loaded: ['base_model.model.model.layers.0.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_B.weight'].
{'train_runtime': 109099.6031, 'train_samples_per_second': 0.911, 'train_steps_per_second': 0.007, 'train_loss': 1.1073822569601315, 'epoch': 2.0}
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 776/776 [30:18:19<00:00, 140.59s/it]
If there's a warning about missing keys above, please disregard :)
内存太小,能finetune下来就很知足了,如果是单卡24G应该好很多,参考了知乎上有个人训练的例子
python generate.py --base_model "decapoda-research/llama-7b-hf" --lora_weights './lora-alpaca-zh' --load_8bit
stable-diffusion
文字生成图片是很好玩的一个事情,这段时间把玩的最多了:
conda activate stable-diffusion
cd /data/ai-proj/stable-diffusion-webui
./webui.sh -f --server-name='0.0.0.0' --port=1234
./webui.sh -f --server-name='0.0.0.0' --no-half --medvram #穷人内存不够可以这样
有多个GPU的话,可以指定GPU进行多实例,一个GPU起一个实例
set CUDA_VISIBLE_DEVICES=0,1
./webui.sh -f --server-name='0.0.0.0' --port=5678 --device-id='1'
名词解释:
EMA(exponential moving
average)是一个和模型训练有关的参数,解释起来过于复杂,所以简单的说想训练模型就用EMA版,只想出图就用non-EMA版
实验出的几个有意思的prompt:
shz,((best quality)), ((masterpiece)), (detailed), realistic, multiple boys,(riding motorcycle),mustache,chinese clothes,armour,chinese general,looking at viewer, full body,night,moon in the night sky,outdoors,motorcycle <lora:Xiaorenshu_v20:0.8>
Negative prompt: EasyNegative,easynegative bad_prompt_version2 ng_deepnegative_v1_75t
ENSD: 31337, Size: 300x450, Seed: 3836055402, Model: revAnimated_v11, Steps: 25, Sampler: DPM++ SDE Karras, CFG scale: 7, Clip skip: 2, Model hash: d725be5d18, Hires upscale: 2.5, Hires upscaler: R-ESRGAN 4x+ Anime6B, Denoising strength: 0.58
shz,((best quality)), ((masterpiece)), (detailed), realistic, multiple boys,(riding horse),mustache, looking at viewer, outdoors,house, amy,horse
Negative prompt: easynegative bad_prompt_version2 ng_deepnegative_v1_75t
ENSD: 31337, Size: 512x768, Seed: 3836055402, Steps: 25, Sampler: DPM++ SDE Karras, CFG scale: 5, Clip skip: 2, Model hash: 5efb10a9e1, Hires steps: 10, Hires upscale: 2, AddNet Enabled: True, AddNet Model 1: xrs2.0-000016(97413ad0d80d), Hires upscaler: SwinIR_4x, AddNet Module 1: LoRA, AddNet Weight A 1: 0.9, AddNet Weight B 1: 0.9, Denoising strength: 0.45
(illustration:1.1),(best quality),(masterpiece:1.1),shz,1man,Wu_Song,headband,(ridding on a solo tiger+punching the head),solo,forest,full moon,detailed face,<lora:Xiaorenshu_v20:0.9>
Negative prompt: EasyNegative,naked,nsfw,(beard:1.2),(extra tails:1.2),extra body,extra fans,extra hands,extra legs,
ENSD: 31337, Size: 512x768, Seed: 1289157856, Model: guofeng3_v32Light, Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 4, Clip skip: 2, Model hash: f42edd43aa, Hires steps: 5, Hires upscale: 1.5, Hires upscaler: SwinIR_4x, Face restoration: CodeFormer, Denoising strength: 0.41
citivai上有个realistic模型来生成精细图,试验了一把生成兔子:
close up photo of a rabbit, forest, haze, halation, bloom, dramatic atmosphere, centred, rule of thirds, 200mm 1.4f macro shot
Negative prompt: (semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck
ENSD: 31337, Size: 384x640, Seed: 2299724292, Steps: 25, Sampler: Euler a, CFG scale: 7, Model hash: 81086e2b3f, Hires upscale: 1.5, Hires upscaler: Latent, Denoising strength: 0.5
老照片修复
试了各种专用的模型如GFPGAN,CodeFormer,但总觉得猜出来的效果没有官方的例子那么好,比如老照片是单眼皮,结果猜出双眼皮出来,虽然好看,但是太假了,失望。
whisper
非常实用,连large
v2的模型也不到2G,结果连Multilingual的识别率都惊人地好,看番剧生成字幕不在话下——以前这种ASR死贵死贵的,现在好了,正所谓"旧时王谢堂前燕,飞入寻常百姓家"。
感想
一个新的时代开始了,从使用者角度来看,模型简直就是将各种知识,智能逻辑的做成了一个压缩饼干,不管什么场景,对外推理就一个简单接口,屏蔽了各种复杂性。
ChatGPT让人从CRUD中解放出来,捡起已经忘光的机器学习,去学习深度学习,钻研实验和各种论文吧。工程上了解pytorch
是必须,还要了解
deepspeed
这种多机器多GPU分布式计算调度框架......
在实验各种LLM的时候总想起 robocode,没错,这个创立于2000年底的坦克游戏AI对战平台,又跑去看了一眼,居然还活着,真不错!
本地实验LLM
2023 Apr 28 See all posts现在有个Tesla P100显卡,显存是12G+12G,于是得以实验一把目前炙手可热的大模型,记录一下这个月折腾下来的笔记:
ChatGLM-6B 推理
碰到的问题是,模型有12.7G,虽然总显存有24G,但是单显卡12G却装不下,解决办法——修改device map
llama-7b 训练
训练结果, 花了30小时:
内存太小,能finetune下来就很知足了,如果是单卡24G应该好很多,参考了知乎上有个人训练的例子
stable-diffusion
文字生成图片是很好玩的一个事情,这段时间把玩的最多了:
有多个GPU的话,可以指定GPU进行多实例,一个GPU起一个实例
名词解释:实验出的几个有意思的prompt:
citivai上有个realistic模型来生成精细图,试验了一把生成兔子:
老照片修复
试了各种专用的模型如GFPGAN,CodeFormer,但总觉得猜出来的效果没有官方的例子那么好,比如老照片是单眼皮,结果猜出双眼皮出来,虽然好看,但是太假了,失望。
whisper
非常实用,连large v2的模型也不到2G,结果连Multilingual的识别率都惊人地好,看番剧生成字幕不在话下——以前这种ASR死贵死贵的,现在好了,正所谓"旧时王谢堂前燕,飞入寻常百姓家"。
感想
一个新的时代开始了,从使用者角度来看,模型简直就是将各种知识,智能逻辑的做成了一个压缩饼干,不管什么场景,对外推理就一个简单接口,屏蔽了各种复杂性。
ChatGPT让人从CRUD中解放出来,捡起已经忘光的机器学习,去学习深度学习,钻研实验和各种论文吧。工程上了解
pytorch
是必须,还要了解 deepspeed 这种多机器多GPU分布式计算调度框架......在实验各种LLM的时候总想起 robocode,没错,这个创立于2000年底的坦克游戏AI对战平台,又跑去看了一眼,居然还活着,真不错!